

Biosecurity and Biosafety—A Growing Concern

Jennifer Gaudioso, PhD
International Biological Threat Reduction
Global Security Center
Sandia National Laboratories
Albuquerque, NM USA
12 May 2008

Examples of Emerging and Re-Emerging Diseases

Adapted from Morens, D.M., et al. 2004. The Challenge of Emerging and Re-emerging Infectious Diseases. Nature 430:242–49.

Infectious Disease

- Global outbreaks of emerging and reemerging infectious disease present a growing concern to the international community
- Infectious diseases now spread across borders as never before
- ~75% of emerging diseases are zoonotic
- Laboratories are a critical tool in the global fight against these diseases
 - Recent growth in containment laboratories intended to help in the efforts to control these diseases
 - Strengthening national disease surveillance, prevention, control and response systems is a key pillar in the implementation of the International Health Regulations (2005)

SARS virus

FMD outbreak UK

Examples of Expansion of Containment Laboratories Inside the U.S.

- Hard to count but general consensus that BSL3 and BSL4 space is growing
- 12 States had public health labs with BSL3 lab space in 1998; this has grown to at least 46 states in 2007
- NIAID is funding construction of 13 regional biocontainment laboratories (BSL3) and 2 national biocontainment laboratories (BSL4)
- BSL3 labs registered to work with select agents
 - 1042 with CDC; 314 with USDA; 1356 Total
- 2005 American Society for
 Microbiology identified 277
 distinct facilities in 46 states
 with BSL3 capable space

References:

- Keith Rhoades, Congressional Testimony, October 2007, GAO -08-108T
- American Society for Microbiology, Survey of BSL3
 Laboratory Capabilities in the United States, September 2005

U.S. State Public Health Labs with BSL3 Capacity - Association of Public Health Laboratories, August 2004

Examples of Expansion of Containment Laboratories Outside the U.S.

- World Bank is funding construction of BSL3s in many countries
- Brazil is currently building a network of 12 BSL3 public health laboratories
- New BSL3 labs operational in 2006:
 - 16 India
 - 5 Thailand
 - 2 Indonesia
 - 1 Myanmar
 - 1 Bangladesh
- Singapore had 3 BSL3 laboratories in 2003 but is building 15

References:

- Singapore Ministry of Health website
- World Bank website
- Gronvall et al, Biosecurity and Bioterrorism, 5(1), 2007, p. 75-85
- Mário Althoff, Coordinator, Brazil Public Health Laboratory Network

Biosafety Levels Reported in Surveys

- 765 survey respondents from Latin America, Asia, Eastern Europe, and the Middle East
- Most respondents work in basic biosafety labs
- Significantly fewer respondents work in containment labs

• Asia: 41 BSL3, 4 BSL4

• Eastern Europe: 14 BSL3, 3 BSL4

• Latin America: 22 BSL3, 0 BSL4

• Middle East: 13 BSL3, 1 BSL4

 Many do NOT know their biosafety level

• Asia: 21%

• Eastern Europe: 35%

Latin America: 19%

Middle East: 44%

Surveys Indicate Biosafety Often Inadequate by US Standards

- In Asia: ~2/3 of respondents studying Japanese encephalitis, HPAI, and SARS use BSL 2
- In the Middle East: most respondents studying Brucella, HPAI, and Mycobacterium tuberculosis use BSL2
- In Latin America: most respondents studying Hanta virus, Yellow fever virus, Dengue, and *Mycobacterium tuberculosis* use BSL2
- In Eastern Europe: Mycobacterium tuberculosis is evenly split between BSL2 and BSL3; the majority of HPAI, Brucella, and Coxiella burnetti work is done at BSL3 or BSL4
- Percentage of respondents who will do the experiment anyway if they do not have a particular item of safety equipment
 - Nearly 50% in Asia
 - ~45% in the Middle East,
 - ~ 30% in Eastern Europe
 - Only 20% in Latin America

Biosafety Practices Reported in Surveys

- Most facilities have some form of PPE
 - Primarily Gloves and Gowns
- Only half the facilities have autoclaves within the laboratory or onsite

Biosecurity Measures Reported in Surveys

- Biosecurity implementation was based upon practices of:
 - Physical Security
 - Personnel Security
 - Material Control and Accountability
- 97% of the total respondents implement some level of biosecurity
 - 27% implement some biosecurity all of the time
 - 70% implement some security at least some of the time

Perceptions of Risk Reported by Survey Respondents

- Respondents very worried about lab-acquired infections
 - Asia 46%
 - Middle East 46%
 - Latin America 57%
 - Eastern Europe 33%
- Respondents very worried that the biological agent they study could be used to cause harm
 - Asia 44%
 - Middle East 36%
 - Latin America 42%
 - Eastern Europe 24%
 - But, not from *their* lab....

- Respondents who think it is likely or very likely that an employee would steal an agent with an intent to cause harm
 - Asia 15%
 - Middle East 17%
 - Latin America 9%
 - Eastern Europe 7%
- Respondents who think it is likely or very likely that an outsider would steal an agent with an intent to cause harm
 - Asia 14%
 - Middle East 15%
 - Latin America 7.5%
 - Eastern Europe 8%

Examples of Growing Attention to Laboratory Biosecurity and Biosafety Internationally

- World Health Assembly Resolution 58.29 (2005)
 - Urges Member States to implement an integrated approach to laboratory biosafety, including containment of microbiological agents and toxins
- European Commission Green Paper on Bio-Preparedness (November 2007) recommends developing European standards on laboratory biosecurity including
 - Physical protection, access controls, accountability of pathogens, and registration of researchers
- Organization for Economic Cooperation and Development published "Best Practice Guidelines for Biological Resource Centers" including a section on biosecurity in February 2007
- Kampala Compact (October 2005) and the Nairobi Announcement (July 2007) stress importance of implementing laboratory biosafety and biosecurity in Africa
- BWC Experts Group meetings in 2003 and 2008 address biosecurity
- UNSCR 1540 requires States to establish and enforce legal barriers to acquisition of WMD by terrorists and states, including laboratory biosecurity measures

BIOLOGICAL THREAT REDUCTION

Examples of Recent Safety and Security Issues

- Texas A&M University, United States, 2006 2007
 - U.S. federal officials suspend all Select Agent research due to failures to report two incidents
- Pirbright Laboratory, Institute of Animal Health, United Kingdom, 2007
 - Leaks from pipes in the effluent system caused Foot and Mouth Disease outbreak
 - Pipes were known to need maintenance
- Professor Thomas Butler, United States, 2003
 - 30 vials of *Yesinia pestis* missing from lab (never recovered); Butler served 19 months in jail
- Laboratory-acquired outbreaks of SARS, 2003 2004
 - Singapore—September 2003
 - Taiwan (China)—December 2003
 - Beijing and Anhui (China)—March 2004

TAMU Select Agent researcher

– Dallas Morning

News

Thomas Butler

How Do You Avoid Similar Problems at Your Institution?

Laboratory biorisk management programs need:

- Appropriate resources
- Institutional guidelines and operating procedures
- Training
- Oversight

But:

- How do you decide to allocate your scarce resources?
- How do you determine what needs to be addressed in operating procedures?
- How do you determine which training is required for whom?
- How do you determine what level of oversight is appropriate?

It Depends on the Risk Assessment!!

Planning: Risk Assessment as the Foundation

- Impossible to eliminate risk without eliminating the biohazard
 - Identify, assess, and manage the risks
- Need to effectively allocate limited resources to address highest risks first
- Risk assessment
 - Identify and characterize biohazards
 - Evaluate laboratory procedures
 - Evaluate local threat environment
 - Analyze gaps in existing biosafety and biosecurity measures
 - Prioritize gaps based on risks
- Management uses risk assessment to make risk mitigation decisions
 - Engineered controls
 - Procedural controls
 - Administrative controls

Implementation: Roles and Responsibilities

- Biorisk manager provides oversight and subject matter expertise
- Scientific manager responsible for implementation
- Biorisk management committee serves as independent review group
- Top management allocates resources and is ultimately responsible for institution's biorisk management program

Implementation: Training

Standard training

- Combination of lectures and informal mentoring
- This is NOT sufficient

Ladder of knowledge and skills

- Basic awareness raising
- Knowledge of fundamentals
- Hands-on learning of best practices
- Advanced training on best practices
- Facility-specific training
- Task-specific training

New training initiatives are shifting the paradigm

- Training needs to give students practice case studies, interactive discussions, and hands-on training
- Success of training should be measured against specific learning objectives
 - Pre and post-training tests, quizzes, and follow-up after end of course

New Training Initiatives

- American Biological Safety Association: Principles and Practices of Biosafety
 - Week-long biosafety course, based on case studies and lessons learned
- World Health Organization and U.S. National Institutes of Health: Laboratory Biosafety Train-the-Trainers
 - Two-week biosafety course, relying on mix of lecture, case study, and hands-on laboratory exercises
- Sandia National Laboratories: Controlling Biorisks
 - Week-long course with an integrated approach to laboratory biosafety and biosecurity, using lecture, case studies, guided discussion, and hands-on laboratory activity
- Advanced training on best practices
 - Emory University: Science and Safety Training Program
 - Canadian Science Centre for Human and Animal Health: International High Containment Biosafety Workshop

Oversight to Ensure Continual Improvement

- Biorisk management program must be documented
 - Risk assessments, biorisk manuals, standard operating procedures, program objectives, maintenance plans, incident response plans, equipment certifications, inventories, etc.
- Documents need to be reviewed and updated at regular intervals, and after any incidents
 - Risk assessments should also be reviewed after any changes to institution's program or threat environment
- Regular audits are vital tool to assess program effectiveness, and evaluate opportunities for improvement
 - Frequency determined by risk
 - Internal self assessments
 - External third-party reviews
 - Must develop follow-up plan to address corrective actions
 - Need to verify corrective actions have been completed
- Need a cohesive framework for implementing a program to control biorisks
 - Many elements to integrate

Biorisk Management Systems Approach

- Need a cohesive framework for implementing a program to control biorisks
 - · Many elements to integrate
- Example management systems used in labs
 - ISO 9001:2000 a quality management system
 - ISO 14001:2004 an environmental management system
 - OHSAS 18001:2007 an occupational health &safety management system
- CEN Workshop Agreement, 2008 laboratory biorisk management system
 - · Risk-based approach
- All rely on a "Plan-Do-Check-Act" approach with the goal of continuous improvement

Biorisk Management Resources

- Laboratory Biosafety and Biosecurity Guidance
 - Laboratory Biosecurity Handbook, CRC Press, 2007
 - WHO Laboratory Biosafety Manual, 3rd edition, 2004
 - Chapter 9 on Laboratory Biosecurity
 - WHO/FAO/OIE joint guidance Biorisk Management: Laboratory Biosecurity Guidance, 2006
 - CDC/NIH Biosafety in Microbiological and Biomedical Laboratories, 5th edition, 2007
 - Extensive recommendations on biosecurity
 - Canada's Laboratory Biosafety Guidelines, 3rd edition, 2004
 - Laboratory biorisk management standard
 - CEN Workshop Agreement 15793, February 2008
- Training and Other Key Online Resources
 - · IBWG: internationalbiosafety.org
 - AnBIO: www.anbio.org
 - ABSA: www.absa.org
 - APBA: www.a-pba.org
 - Emory: www.sph.emory.edu/CPHPR/biosafetytraining
 - Canada: www.biosafety.ca/home.html
 - WHO TTT: www.who.int
 - Biosecurity Engagement Program: www.BEPstate.net
 - Sandia: www.biosecurity.sandia.gov

Key Conclusions and Opportunities

- Growing concern globally about laboratory biosafety, biosecurity, and biocontainment
- Many commonalities around the world
 - Opportunities to learn from each other
- Cost is a significant factor
 - Lower cost / lower technology solutions to managing biosafety and biosecurity risks must be made available
 - Risk assessment is the essential planning tool
- Biorisk management systems can be a good systematic approach to ensuring effective biosafety and biosecurity mitigation measures are in place at the institutional level

Contact Information

Jennifer Gaudioso, Ph.D. Tel. 505-284-9489 email: jmgaudi@sandia.gov

Sandia National Laboratories PO Box 5800, MS 1363 Albuquerque, NM 87185 USA

www.biosecurity.sandia.gov

